
Seth, Tea Talk 07/11/23

Forward gradients

Forward or backward?

• Backprop: compute function and right-multiply, working backwards through the network

• Forwardprop: multiply Jacobians, , from R to L in same forward pass as evaluating

Why backprop?

• To compute e.g. with forwardprop

• First compute and

• Then compute and “push-forward”

• Memory efficient: don’t need to store
intermediates

• But if we now want e.g. , we have to repeat
this procedure from scratch

Why backprop?

• With backprop

• Evaluate once,

• Use this (+ intermediates) to compute
gradients w.r.t all variables

Why backprop?

• In general, to compute gradient of function w.r.t

where is complexity of evaluating and is depth

• In ML, usually and so backprop is more time-efficient

Directional derivatives

• To make forward prop efficient, Baydin et al use it for the directional derivative
 along a random vector

• If are iid, zero-mean and unit-variance; the expression is an
unbiased estimator for (proof to follow)

• Note that is never actually computed

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022

Directional derivatives

• To estimate

Unbiasedness proof

• The inner product is

• Therefore, the ith element of is

• is chosen s.t. are mean zero, variance one, and i.i.d

• Mean zero + variance one — first expectation is 1

• I.i.d + mean zero — second expectation is 0

• Thus ith element of is ith element of the true gradient

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022

Results
Toy optimisation problems

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022

Results
MNIST, MLP

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022

Results
MNIST, CNN

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022

Results
Runtime and memory

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022

Scaling Forward Propagation

• Reduces variance of forward gradients:

• Apply perturbation vector to activation gradients instead of weights

• Add local losses on blocks, spatial patches and groups of channels

• “LocalMixer” architecture inspired by MLPMixer

• Experiments scaled to ImageNet

Results
Supervised learning

Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023

BP = Backprop

L = Local losses

LG = Greedy local losses

FA = Feedback alignment (random,
fixed backward weights)

DFA = Direct feedback alignment

FG = Forward gradients

W = Weight-perturbed (Baydin et al)

A = Activation-perturbed

Results
Self-supervised learning

BP = Backprop

L = Local losses

LG = Greedy local losses

FA = Feedback alignment (random,
fixed backward weights)

DFA = Direct feedback alignment

FG = Forward gradients

W = Weight-perturbed (Baydin et al)

A = Activation-perturbed

Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023

Results
Local losses

Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023

Conclusion

• Forward propagation has some compelling properties

• Reduced memory relative to backprop, particularly for deeper networks

• Gradient + function eval in a single forward pass

• Limitations for case with few outputs and many inputs addressed by using
random directional derivatives (Baydin et al., 2022)

• Scaled to large models and datasets by Ren et al., 2023

