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Forward gradients



Forward or backward?

• Backprop: compute function  and right-multiply, working backwards through the network


• Forwardprop: multiply Jacobians, , from R to L in same forward pass as evaluating 



Why backprop?

• To compute e.g.  with forwardprop


• First compute  and 


• Then compute  and “push-forward”  





• Memory efficient: don’t need to store 
intermediates  


• But if we now want e.g. , we have to repeat 
this procedure from scratch



Why backprop?

• With backprop 


• Evaluate  once,


• Use this (+ intermediates) to compute 
gradients w.r.t all variables



Why backprop?

• In general, to compute gradient of function  w.r.t 





where  is complexity of evaluating  and  is depth


• In ML, usually  and so backprop is more time-efficient



Directional derivatives

• To make forward prop efficient, Baydin et al use it for the directional derivative 
 along a random vector 


• If  are iid, zero-mean and unit-variance; the expression   is an 
unbiased estimator for  (proof to follow)


• Note that  is never actually computed


Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022



Directional derivatives

• To estimate 




Unbiasedness proof

• The inner product is





• Therefore, the ith element of  is 





•  is chosen s.t.  are mean zero, variance one, and i.i.d


• Mean zero + variance one — first expectation is 1


• I.i.d + mean zero — second expectation is 0


• Thus ith element of   is ith element of the true gradient 

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022



Results
Toy optimisation problems

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022



Results
MNIST, MLP

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022



Results
MNIST, CNN

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022



Results
Runtime and memory

Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022



Scaling Forward Propagation

• Reduces variance of forward gradients:


• Apply perturbation vector  to activation gradients instead of weights


• Add local losses on blocks, spatial patches and groups of channels


• “LocalMixer” architecture inspired by MLPMixer


• Experiments scaled to ImageNet



Results
Supervised learning

Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023

BP = Backprop


L = Local losses


LG = Greedy local losses


FA = Feedback alignment (random, 
fixed backward weights)


DFA = Direct feedback alignment


FG = Forward gradients


W = Weight-perturbed (Baydin et al)


A = Activation-perturbed



Results
Self-supervised learning

BP = Backprop


L = Local losses


LG = Greedy local losses


FA = Feedback alignment (random, 
fixed backward weights)


DFA = Direct feedback alignment


FG = Forward gradients


W = Weight-perturbed (Baydin et al)


A = Activation-perturbed

Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023



Results
Local losses

Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023



Conclusion

• Forward propagation has some compelling properties


• Reduced memory relative to backprop, particularly for deeper networks


• Gradient + function eval in a single forward pass


• Limitations for case with few outputs and many inputs addressed by using 
random directional derivatives (Baydin et al., 2022)


• Scaled to large models and datasets by Ren et al., 2023


