Forward gradients

Atılım Güneş Baydin¹ Barak A. Pearlmutter² Don Syme³ Frank Wood⁴ Philip Torr⁵

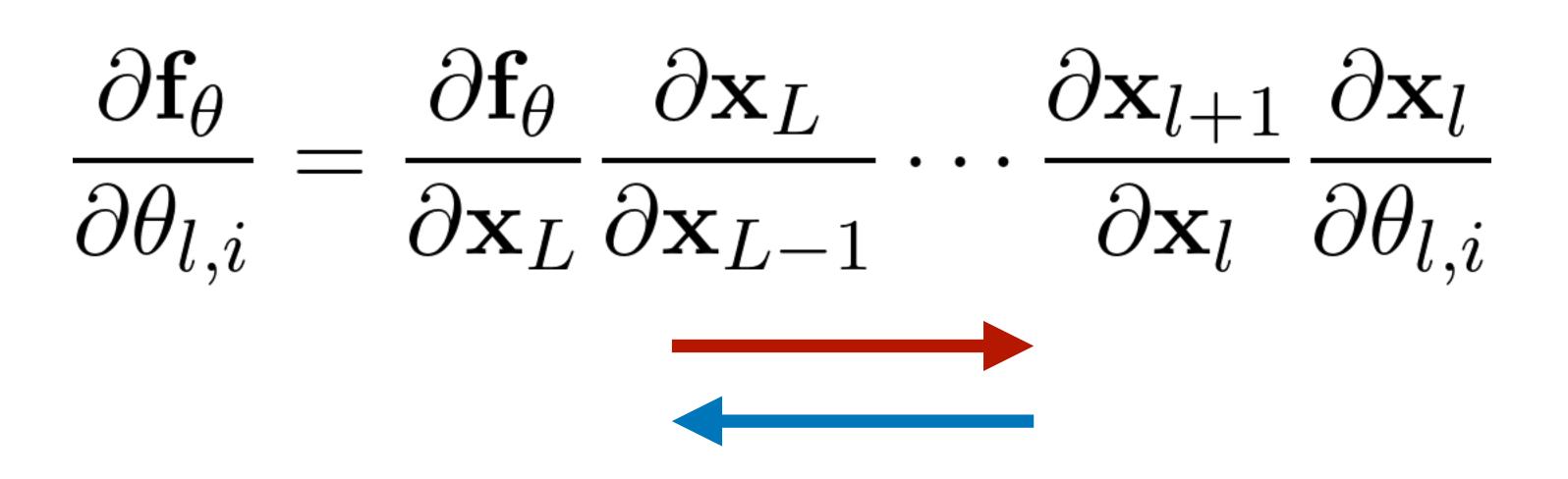
Mengye Ren¹*, Simon Kornblith², Renjie Liao³, Geoffrey Hinton^{2,4} ¹NYU, ²Google, ³UBC, ⁴Vector Institute

Seth, Tea Talk 07/11/23

Gradients without Backpropagation

SCALING FORWARD GRADIENT WITH LOCAL LOSSES

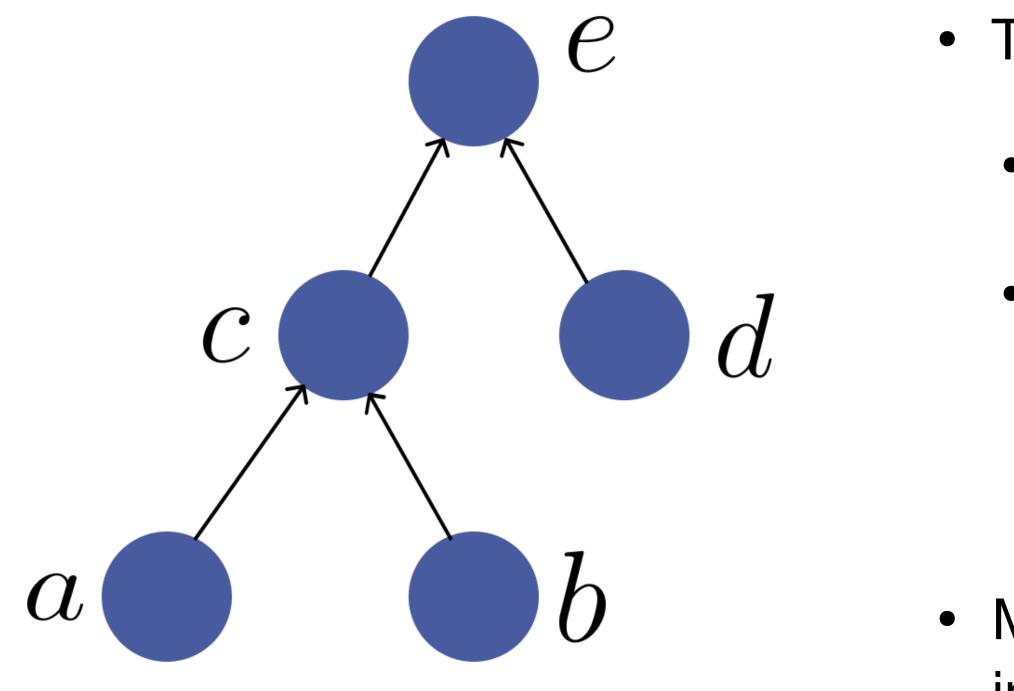
Forward or backward?



- **Backprop**: compute function $f_{\theta}(x_0)$ and right-multiply, working backwards through the network
- $\partial \mathbf{x}_{l+1}$ $\mathbf{f}_{\theta}(\mathbf{x}_{0})$

• Forwardprop: multiply Jacobians, $\left(\frac{\partial \mathbf{x}_l}{\partial \mathbf{x}_l} \right)$, from R to L in same forward pass as evaluating

Why backprop?



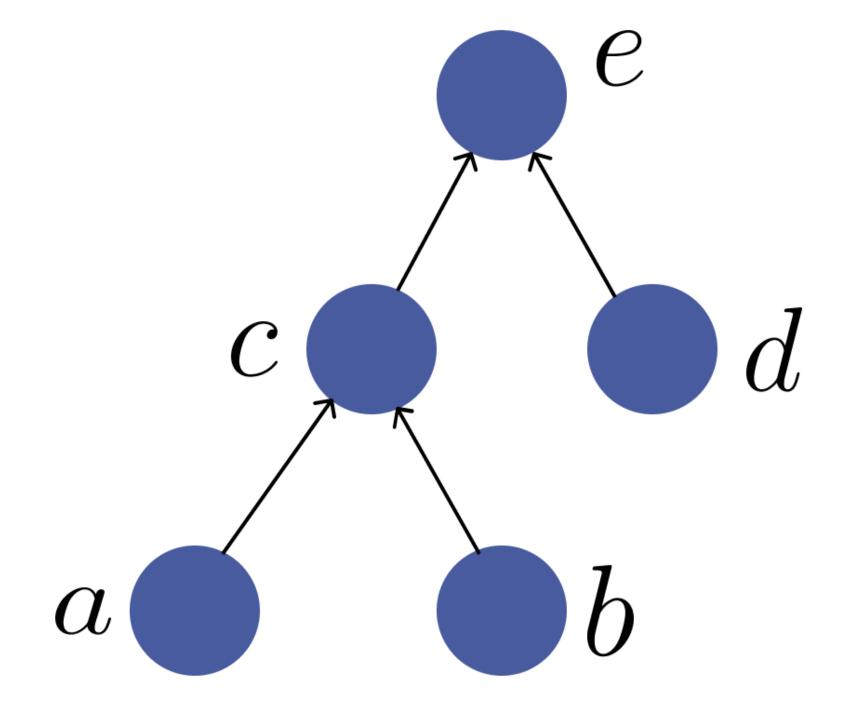
• But if we now want e.g. $\partial e/\partial b$, we have to repeat this procedure from scratch

- To compute e.g. $\partial e/\partial a$ with forwardprop
 - First compute $\partial c/\partial a$ and c(a,b)
 - Then compute $\partial e/\partial c$ and "push-forward"

∂e	∂e	∂c
∂a	$= \overline{\partial c}$	$\frac{\partial a}{\partial a}$

Memory efficient: don't need to store intermediates c(a, b)

Why backprop?



• With backprop

- Evaluate *e* once,
- Use this (+ intermediates) to compute gradients w.r.t all variables

Why backprop?

• In general, to compute gradient of function $f_{\theta} : \mathbb{R}^N \to \mathbb{R}^M$ w.r.t $\theta \in \mathbb{R}^D$ Forward prop Backprop O(FD) O(FM)Time O(1)O(L)Memory |

where F is complexity of evaluating $f_{\theta}(\cdot)$ and L is depth

• In ML, usually $M \ll D$ and so backprop is more time-efficient

Directional derivatives

Atılım Güneş Baydin¹ Barak A. Pearlmutter² Don Syme³ Frank Wood⁴ Philip Torr⁵

- unbiased estimator for $abla \mathbf{f}_{ heta}$ (proof to follow)
- Note that $\nabla \mathbf{f}_{\theta}$ is never actually computed

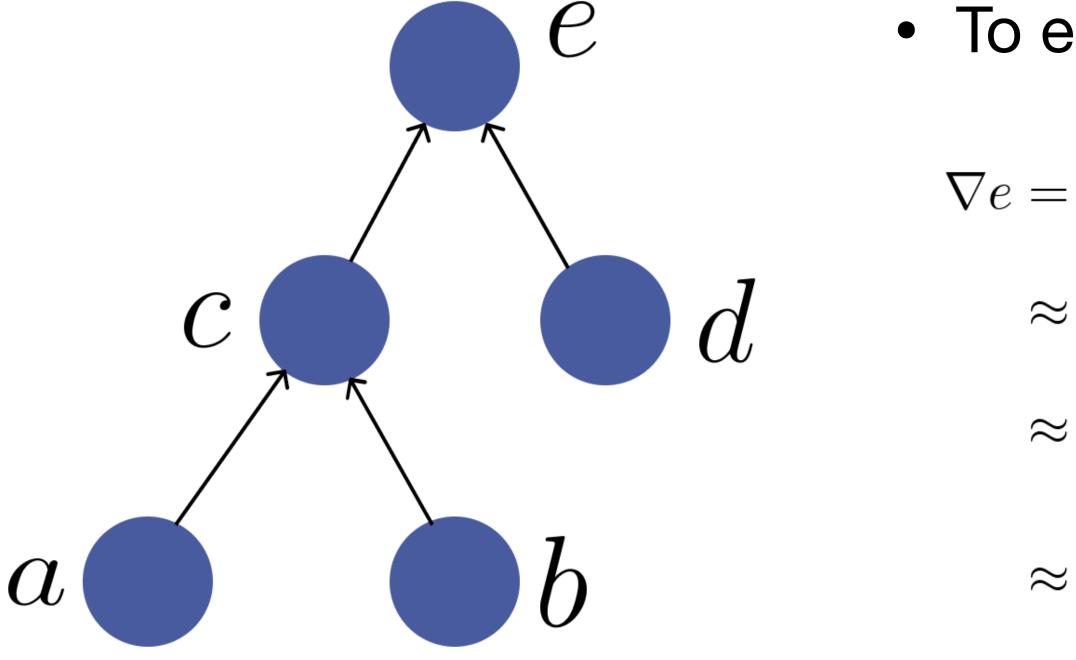
Baydin, Pearlmutter, Syme, Wood, Torr. Gradients without Backpropagation, 2022

Gradients without Backpropagation

• To make forward prop efficient, Baydin et al use it for the directional derivative $\nabla f_{\theta} \cdot \mathbf{v}$ along a random vector $\mathbf{v} \sim p(\mathbf{v})$

• If $\{v_i\}$ are iid, zero-mean and unit-variance; the expression $(\nabla f_{\theta} \cdot v) \cdot v$ is an

Directional derivatives



• To estimate $\nabla e = \begin{bmatrix} \frac{\partial e}{\partial a}, \frac{\partial e}{\partial b}, \frac{\partial e}{\partial d} \end{bmatrix}^T$

$$\begin{bmatrix} \frac{\partial e}{\partial a}, \frac{\partial e}{\partial b}, \frac{\partial e}{\partial d} \end{bmatrix}^{T} (\nabla e \cdot \mathbf{v}) \cdot \mathbf{v}, \text{ where } \mathbf{v} = [v_{a}, v_{b}, v_{d}]^{T} \sim p(\mathbf{v}) \left(\frac{\partial e}{\partial a} \cdot v_{a} + \frac{\partial e}{\partial b} \cdot v_{b} + \frac{\partial e}{\partial d} \cdot v_{d} \right) \cdot \mathbf{v} \left(\frac{\partial e}{\partial c} \left(\frac{\partial c}{\partial a} \cdot v_{a} + \frac{\partial c}{\partial b} \cdot v_{b} \right) + \frac{\partial e}{\partial d} \cdot v_{d} \right) \cdot \mathbf{v}$$

Unbiasedness proof

The inner product is

$$\nabla \mathbf{f}_{\theta} \cdot \mathbf{v} = \sum_{k} \frac{\partial f}{\partial \theta_{k}} v_{k}$$

• Therefore, the *i*th element of $\mathbb{E}_{\mathbf{v}} [(\nabla \mathbf{f}_{\theta} \cdot \mathbf{v}) \cdot \mathbf{v}]_{is}$

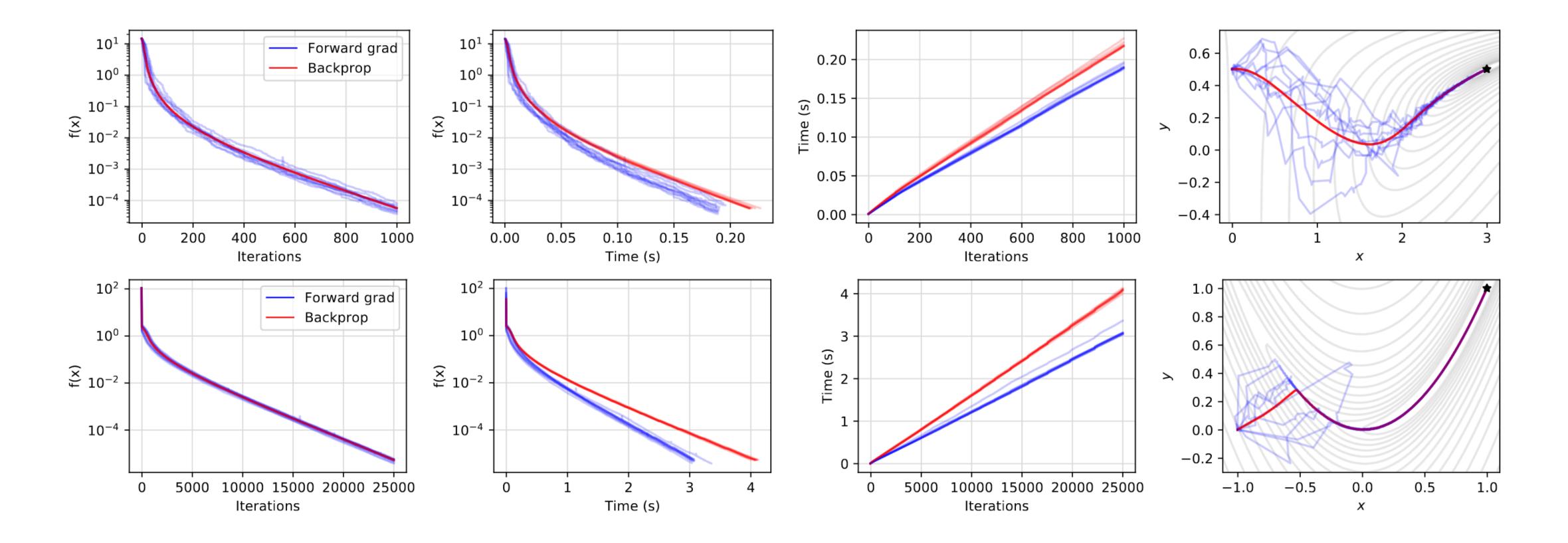
$$\frac{\partial f}{\partial \theta_i} \mathbb{E}\left[v_i^2\right] + \sum_{j \neq i} \frac{\partial f}{\partial \theta_j} \mathbb{E}\left[v_j^2\right] + \sum_{j \neq i} \frac{\partial$$

- $p(\mathbf{v})$ is chosen s.t. v_i are mean zero, variance one, and i.i.d
 - Mean zero + variance one first expectation is 1
 - **I.i.d + mean zero** second expectation is 0
- Thus *i*th element of $\mathbb{E}_{\mathbf{v}} [(\nabla \mathbf{f}_{\theta} \cdot \mathbf{v}) \cdot \mathbf{v}]$ is *i*th element of the true gradient

 $= \frac{\partial f}{\partial \theta_i} v_i + \sum_{j \neq i} \frac{\partial f}{\partial \theta_i} v_j$

 $\sum_{\neq i} \frac{\partial f}{\partial \theta_j} \mathbb{E}\left[v_i v_j\right]$

Results Toy optimisation problems



Results MNIST, MLP

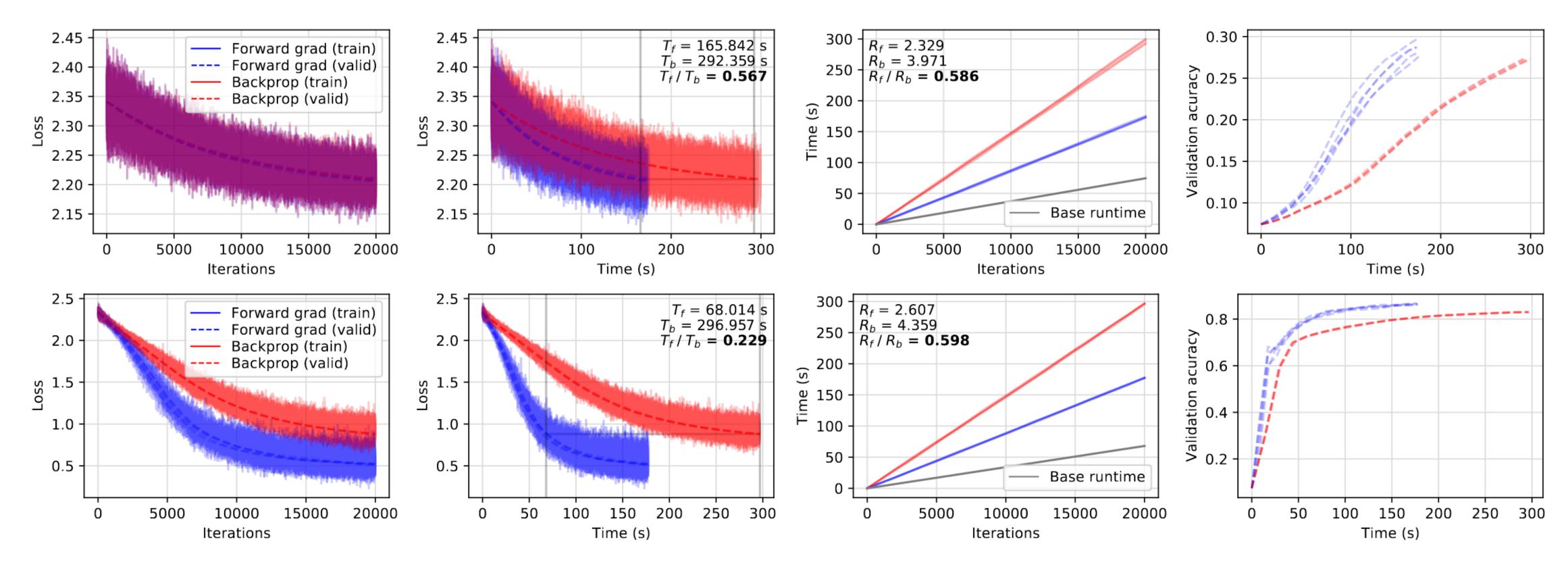


Figure 4. Comparison of forward gradient and backpropagation for the multi-layer NN, showing two learning rates. Top row: learning rate 2×10^{-5} . Bottom row: learning rate 2×10^{-4} . Showing five independent runs per experiment.

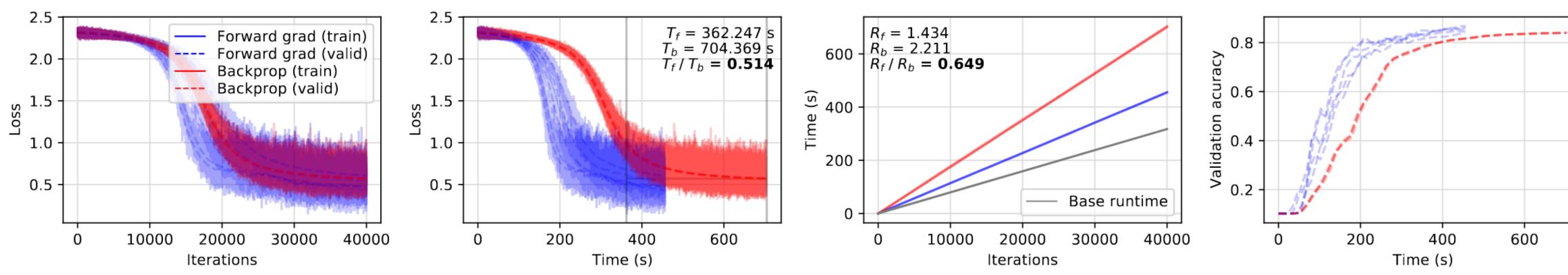


Figure 5. Comparison of forward gradient and backpropagation for the CNN. Learning rate 2×10^{-4} . Showing five independent runs.

Results Runtime and memory

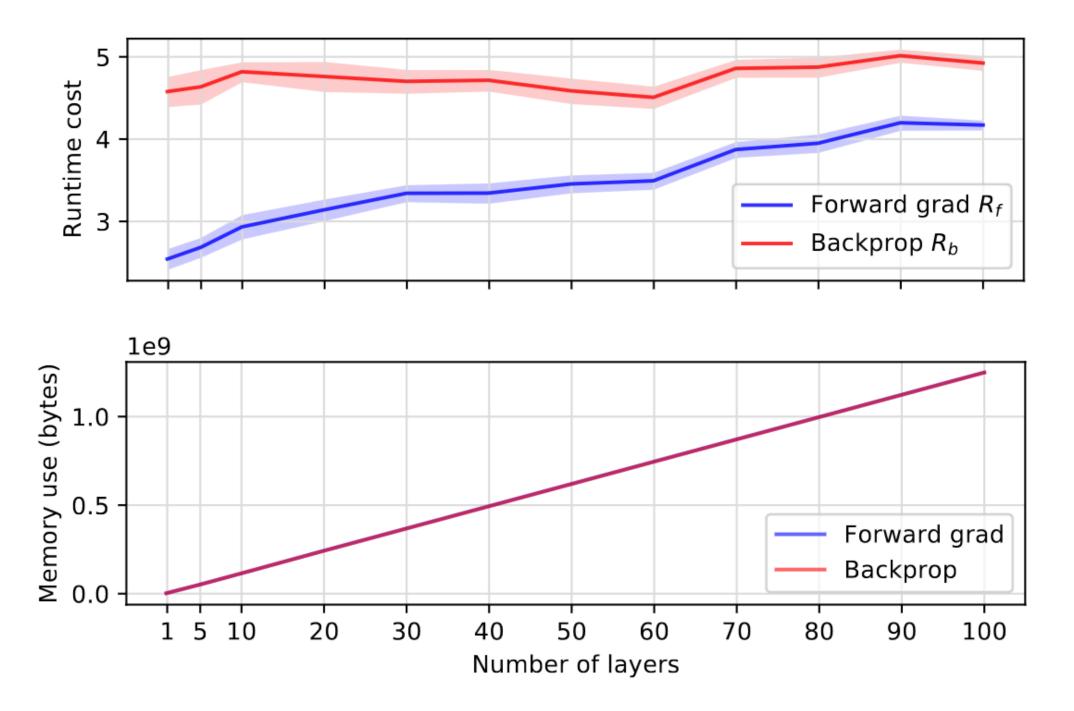


Figure 6. Comparison of how the runtime cost and memory usage of forward gradients and backpropagation scale as a function NN depth for the MLP architecture where each layer is of size 1024. Showing mean and standard deviation over ten independent runs.

Scaling Forward Propagation

SCALING FORWARD GRADIENT WITH LOCAL LOSSES

Mengye Ren¹*, Simon Kornblith², Renjie Liao³, Geoffrey Hinton^{2,4} ¹NYU, ²Google, ³UBC, ⁴Vector Institute

- Reduces variance of forward gradients:
 - Apply perturbation vector \mathbf{v} to activation gradients instead of weights
 - Add local losses on blocks, spatial patches and groups of channels
- "LocalMixer" architecture inspired by MLPMixer
- Experiments scaled to ImageNet

Results **Supervised learning**

Dataset Network Metric	MNIST S/1/1 Test / Train Err. (%)	MNIST M/1/16 Test / Train Err. (%)	CIFAR-10 M/8/16 Test / Train Err. (%)	ImageNet L/32/64 Test / Train Err. (%)	BP = Backprop L = Local losses
BP L-BP LG-BP	2.66 / 0.00 2.38 / 0.00 2.43 / 0.00	2.41 / 0.00 2.16 / 0.00 2.81 / 0.00	33.62 / 0.00 30.75 / 0.00 33.84 / 0.05	36.82 / 14.69 42.38 / 22.80 54.37 / 39.66	LG = Greedy local losses
		FA = Feedback alignment (random, fixed backward weights)			
FA L-FA LG-FA	2.82 / 0.00 3.21 / 0.00 3.11 / 0.00	2.90 / 0.00 2.90 / 0.00 2.50 / 0.00	39.94 / 28.44 39.74 / 28.98 39.73 / 32.32	94.55 / 94.13 87.20 / 85.69 85.45 / 82.83	DFA = Direct feedback alignment
DFA FG-W	3.31 / 0.00 9.25 / 8.93	3.17 / 0.00 8.56 / 8.64	38.80 / 33.69 55.95 / 54.28	91.17 / 90.28	FG = Forward gradients
FG-A LG-FG-W LG-FG-A	3.24 / 1.53 9.25 / 8.93 3.24 / 1.53	3.76 / 1.75 5.66 / 4.59 2.55 / 0.00	59.72 / 41.29 52.70 / 51.71 30.68 / 19.39	98.83 / 98.80 97.39 / 97.29 58.37 / 44.86	W = Weight-perturbed (Baydin et al)
	Table 3: Su	A = Activation-perturbed			

Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023

Results Self-supervised learning

Dataset Network Metric	CIFAR-10 M/8/16 Test / Train Err. (%)	CIFAR-10 L/8/64 Test / Train Err. (%)	ImageNet L/32/64 Test / Train Err. (%)			
BP	24.11/21.08	17.53 / 13.35	55.66 / 49.79			
L-BP LG-BP	24.69 / 21.80 29.63 / 25.60	19.13 / 13.60 23.62 / 16.80	59.11 / 52.50 68.36 / 62.53			
BP-free algorithms						
FA	45.87 / 44.06	67.93 / 65.32	82.86 / 80.21			
L-FA	37.73 / 36.13	31.05 / 26.97	83.18 / 79.80			
LG-FA	36.72 / 34.06	30.49 / 25.56	82.57 / 79.53			
DFA	46.09 / 42.76	39.26 / 37.17	93.51 / 92.51			
FG-W	53.37 / 51.56	50.45 / 45.64	91.94 / 89.69			
FG-A	54.59 / 52.96	56.63 / 56.09	97.83 / 97.79			
LG-FG-W	52.66 / 50.23	52.27 / 48.67	91.36 / 88.81			
LG-FG-A	32.88 / 29.73	26.81 / 23.90	73.24 / 66.89			

Table 4: Self-supervised contrastive learning with linear readout

Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023

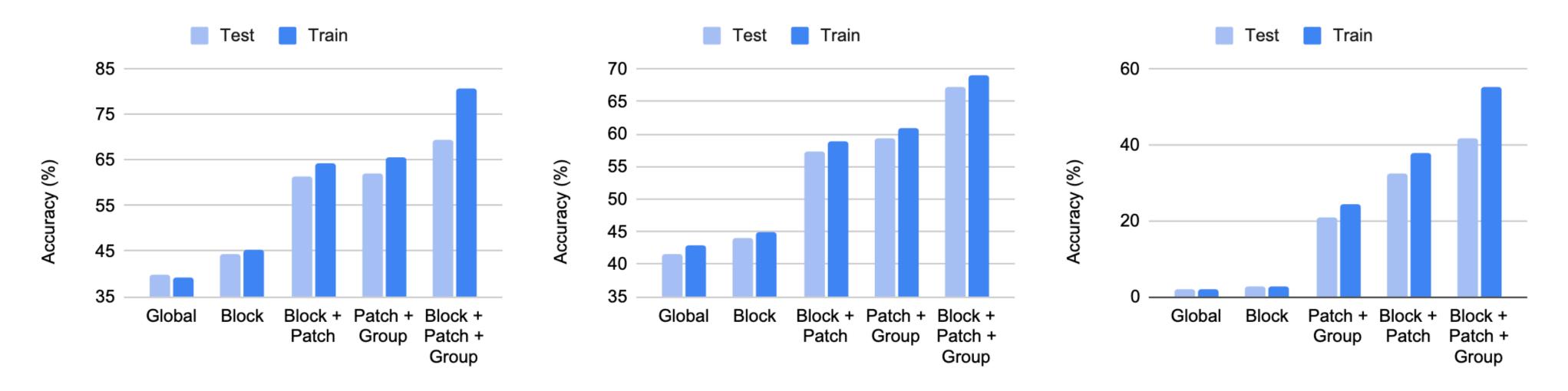
- BP = Backprop
- L = Local losses
- LG = Greedy local losses

FA = Feedback alignment (random, fixed backward weights)

- DFA = Direct feedback alignment
- FG = Forward gradients
- W = Weight-perturbed (Baydin et al)

A = Activation-perturbed

Results Local losses



Ren, Kornblith, Liao, Hinton. Scaling Forward Gradients with Local Losses. 2023

(a) CIFAR-10 Supervised M/8 (b) CIFAR-10 Contrastive M/8 (c) ImageNet Supervised L/32

Conclusion

- Forward propagation has some compelling properties
 - Reduced memory relative to backprop, particularly for deeper networks
 - Gradient + function eval in a single forward pass
- Limitations for case with few outputs and many inputs addressed by using random directional derivatives (Baydin et al., 2022)
- Scaled to large models and datasets by Ren et al., 2023